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Abstract. We have studied the travelling salesman problem on a dilute square lattice of 
size 15 x 15, using the simulated annealing technique. We determined the average optimised 
travel distances per city a E  and a ,  as functions of lattice site occupation (city) concentration 
p ,  using Euclidean and ’Cartesian’ type metrics (denoted by E and C respectively) for the 
calculation of travel distances. at? is found to have a monotonic variation from a constant 
A to 1 as p varies from 0 to 1 with A,=0.80*0.05 and A,= 1.00r0.05. We also show 
that the ratio a c / a E  reduces from about 1.27 for p - 0  to 1 for p = 1, indicating A,= 
(41’ ~ ) A F .  

Following the recent formulation of the travelling salesman problem (TSP) on randomly 
diluted lattices (Chakrabarti 1986, Dhar et a1 1987), we study here the variation of the 
average optimised travel distance per city against the occupation concentration of the 
cities, using the simulated annealing technique (Kirkpatrick et a1 1983, Kirkpatrick 
1984). In TSP on dilute lattices, cities are represented by the occupied lattice sites and 
they are randomly distributed with concentration p .  The main object is to find the 
optimised (shortest) route of travel of a salesman who must visit each of the cities at 
least once and comes back to his starting point. The specific quantities of interest are 
the average optimised travel distance a ( p )  per city and also the average degeneracy 
(entropy) for such optimised tour length. We study here the variation of a ( p )  against 
p for a 15 x 15 square lattice, using the simulated annealing technique. 

Dhar et a1 (1987) studied various inequalities for a ( p )  and suggested that a ( p ) G  
will have a monotonic variation from 1 (lattice constant normalised to unity) for p = 1 
to a constant A (the value of which depends on the metric used) for p + 0. Following 
Armour and  Wheeler (1983), one can find an  upper bound for the optimal path length 
when the country (here the lattice) is divided into strips of arbitrary width and the 
salesman traces a ‘directed path’ (Chakrabarti 1986) in visiting the cities within each 
strip and saves only near the edges of the strips. The total saving then can be maximised 
with respect to the strip width (single parameter variation), giving an estimate of A. 
For Euclidean metric ( r = x ’ + y ’ )  on a lattice Armour and Wheeler (1983) gave 
AE S 0.921. When the travel distance is measured along the lattice edges ( r  = 1x1 + lyl), 
Dhar et a1 (1987) gave A‘- s for the corresponding value of A in such a ‘Cartesian’ 
type metric. The simulated annealing technique gives sub-optimal routes near the 
optimal one for each lattice configuration (city distribution) at each p .  After configur- 
ational averaging over cy we get a, (p)  as well as ac.(p)  for both kinds of metric, and 
we get A, = 0.801 0.05 and Ac = l.OOi0.05. We also show how the ratio a ( - ( p ) / a E ( p )  
reduces from around 4/7r = 1.27 for p + 0 (because of random orientation of the 
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Figure 1. Plot of the simulated annealing results for the average optimised travel distance 
per city a ( p )  against the occupation concentration of lattice sites (city concentration) p 
on a 15 x 15 square lattice. The  insets show the plot of ad? against p ,  ( a )  using Euclidean 
( E )  metric a n d  ( 6 )  using Cartesian ( C J  metric. 
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Euclidean TS path with the lattice axes for the Cartesian TS path (Dhar  el a1 1987) to 
1 for p +  1 (when both paths coincide). 

We generate the randomly dilute lattice (15  x 1 5  square) configuration following 
the standard Monte Carlo procedure. For each such lattice configuration, the sub- 
optimal tour configuration is obtained using the standard simulated annealing pro- 
cedure (Kirkpatrick 1984) bringing equilibrium at a fairly high temperature (above 
the ‘melting’ point) and then reducing the temperature following a constant ratio (=0 .9  
here). In order to avoid the complications of ‘dead slow’ annealing near the ‘glass 
transition’ point, which changes with p and also depends very much on the lattice 
configuration, we have chosen to maintain the same ratio for temperature reduction 
throughout. For each lattice configuration 10 to 20 sub-optimal paths at T + 0, starting 
from randomly different initial tour configurations were obtained and  we took the 
minimum of them (noting their average value also) (see also Rees and  Ball 1987). 
This procedure gives a slight overestimate in the value of a for the travel distance per 
city for each lattice configuration. This may be noted from figures l ( a )  and ( b )  for 
a ( p )  at p = 1 ,  where the lattice is perfect and  a ( p )  should strictly be unity, although 
the above kind of constant ratio annealing schedule gives about 10 to 20% excess (in 
aE  and ac respectively) over unity, which can be obtained using proper annealing 
near the glass transition point. In fact, this excess value in a is a maximum for the 
ordered distribution of cities near p = 1 .  (This seems to be suggested by experience; 
indeed a 4 ,  which is the real optimised quantity, is itself theoretically expected to be 
smaller than unity for disordered lattices compared to its unit value for ordered lattices.) 
Averaging over 10 to 15 lattice configurations at each p ,  a ( p )  were determined for 
both kinds of metric. Figures l ( a )  and ( b )  show the plot of a E ( p )  and a&) respectively 
against p and the insets show the corresponding values of a 4  (the error bars indicate 
the configurational variations). The variation of a 4  is observed to be monotonic 
and for p + 0 they indicate AE = 0.80 * 0.05 and  Ac = 1.00 * 0.05. It may be noted that 
this dilute limit corresponds to continuum and the results of Bonomi and  Lutton (1984) 
and Randelman and Grest (1986) for simulated annealing studies on continuum indicate 
AE20.75. In figure 2, we have plotted the ratio aC/aE against p ,  which shows how 
the ratio decreases from around 1.27 (=4/7r) for p + 0 (indicating random orientation 
of the Euclidean TS path compared to the Cartesian TS path in this limit) to about 1 .1  
(which should strictly be unity, when both TS paths coincide) for p + 1 and this suggests 
A c =  (4/7r)AE (Dhar et a1 1987). 
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Figure 2. Plot of a , ( p ) / a , ( p )  dgainst p .  
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